Semi-supervised classification based on random subspace dimensionality reduction

نویسندگان

  • Guo-Xian Yu
  • Guoji Zhang
  • Carlotta Domeniconi
  • Zhiwen Yu
  • Jane You
چکیده

Graph structure is vital to graph based semi-supervised learning. However, the problem of constructing a graph that reflects the underlying data distribution has been seldom investigated in semi-supervised learning, especially for high dimensional data. In this paper, we focus on graph construction for semisupervised learning and propose a novel method called Semi-Supervised Classification based on Random Subspace Dimensionality Reduction, SSC-RSDR in short. Different from traditional methods that perform graph-based dimensionality reduction and classification in the original space, SSC-RSDR performs these tasks in subspaces. More specifically, SSC-RSDR generates several random subspaces of the original space and applies graph-based semi-supervised dimensionality reduction in these random subspaces. It then constructs graphs in these processed random subspaces and trains semi-supervised classifiers on the graphs. Finally, it combines the resulting base classifiers into an ensemble classifier. Experimental results on face recognition tasks demonstrate that SSC-RSDR not only has superior recognition performance with respect to competitive methods, but also is robust against a wide range of values of

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coupled dimensionality reduction and classification for supervised and semi-supervised multilabel learning

Coupled training of dimensionality reduction and classification is proposed previously to improve the prediction performance for single-label problems. Following this line of research, in this paper, we first introduce a novel Bayesian method that combines linear dimensionality reduction with linear binary classification for supervised multilabel learning and present a deterministic variational...

متن کامل

Feature Selection based Semi-Supervised Subspace Clustering

Clustering is the process which is used to assign a set of n objects into clusters(groups). Dimensionality reduction techniques help in increasing the accuracy of clustering results by removing redundant and irrelevant dimensions. But, in most of the situations, objects can be related in different ways in different subsets of the dimensions. Dimensionality reduction tends to get rid of such rel...

متن کامل

Semi-Supervised Learning Based Prediction of Musculoskeletal Disorder Risk

This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...

متن کامل

READER: Robust Semi-Supervised Multi-Label Dimension Reduction

Multi-label classification is an appealing and challenging supervised learning problem, where multiple labels, rather than a single label, are associated with an unseen test instance. To remove possible noises in labels and features of high-dimensionality, multi-label dimension reduction has attracted more and more attentions in recent years. The existing methods usually suffer from several pro...

متن کامل

Estimation of tangent planes for neighborhood graph correction

Local algorithms for non-linear dimensionality reduction [1], [2], [3], [4], [5] and semi-supervised learning algorithms [6], [7] use spectral decomposition based on a nearest neighborhood graph. In the presence of shortcuts (union of two points whose distance measure along the submanifold is actually large), the resulting embbeding will be unsatisfactory. This paper proposes an algorithm to co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2012